百家乐开户-百家乐官网开户-机械百家乐技巧

網(wǎng)站頁(yè)面已加載完成

由于您當(dāng)前的瀏覽器版本過(guò)低,存在安全隱患。建議您盡快更新,以便獲取更好的體驗(yàn)。推薦使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

當(dāng)前位置: 首頁(yè) · 學(xué)術(shù)交流 · 正文

學(xué)術(shù)交流

【學(xué)術(shù)報(bào)告】研究生“靈犀學(xué)術(shù)殿堂”第561期之韓德仁教授報(bào)告會(huì)通知

發(fā)布時(shí)間:2020年09月22日 來(lái)源:黨委學(xué)生工作部 點(diǎn)擊數(shù):

全校師生:

我校定于2020年09月26日舉辦研究生靈犀學(xué)術(shù)殿堂——韓德仁教授報(bào)告會(huì),現(xiàn)將有關(guān)事項(xiàng)通知如下:

1.報(bào)告會(huì)簡(jiǎn)介

報(bào)告人:韓德仁教授

時(shí)間:2020年09月26日(星期六) 11:00

地點(diǎn):騰訊會(huì)議(會(huì)議號(hào):688 912 696)

報(bào)告題目:求絕對(duì)值方程的非精確Douglas-Rachford分裂法

內(nèi)容簡(jiǎn)介:The last two decades witnessed the increasing of the interests on the absolute value equations (AVE) of finding a vectorxsuch thatAx-|x|=b. In this paper, we reformulate AVE to a generalized linear complementarity problem (GLCP) which, among the equivalent forms, is the most economical one in the sense that it does not increase the dimension of the variables. For solving GLCP, we propose an inexact Douglas-Rachford splitting method which can adopt a relative error tolerance. As a consequence, in the inner iteration processes, we can employ the LSQR method to find a qualified approximate solution for each subproblem, which makes the cost per iteration very low. We prove the convergence of the algorithm and establish its global linear rate of convergence. Comparing results with the popular algorithms such as the exact generalized Newton method, the inexact semi-smooth Newton method and the exact SOR-like method are reported, which indicate that the proposed algorithm is very promising. Moreover, our method also extends the range of numerically solvable of the AVE; that is, it can deal with not only the case that ||A-1|| < 1, the commonly used in those existing literature, but also the case where ||A-1|| = 1.

2.歡迎各學(xué)院師生前來(lái)聽(tīng)報(bào)告。報(bào)告會(huì)期間請(qǐng)關(guān)閉手機(jī)或?qū)⑹謾C(jī)調(diào)至靜音模式。

西北工業(yè)大學(xué)黨委學(xué)生工作部

數(shù)學(xué)與統(tǒng)計(jì)學(xué)院

復(fù)雜系統(tǒng)動(dòng)力學(xué)與控制工信部重點(diǎn)實(shí)驗(yàn)室

2020年9月21日

報(bào)告人簡(jiǎn)介

韓德仁教授,北京航空航天大學(xué)數(shù)學(xué)科學(xué)學(xué)院博士生導(dǎo)師、國(guó)家杰出青年基金獲得者、國(guó)家自然科學(xué)基金會(huì)評(píng)專(zhuān)家。2002年獲南京大學(xué)博士學(xué)位;2002-2017年在南京師范大學(xué)工作;之后在北航工作并擔(dān)任數(shù)學(xué)科學(xué)學(xué)院院長(zhǎng)。

韓教授主要從事大規(guī)模優(yōu)化問(wèn)題、變分不等式問(wèn)題等數(shù)值方法及應(yīng)用研究。在這些方向上發(fā)表學(xué)術(shù)論文100余篇,其中部分論文發(fā)表在諸如Mathematical Programming, Numerische Mathematik, SIAM Journal on Numerical Analysis, SIAM Journal on Image Science, Mathematics of Computation等頂級(jí)期刊上。曾獲中國(guó)運(yùn)籌學(xué)會(huì)青年運(yùn)籌學(xué)獎(jiǎng)二等獎(jiǎng)、江蘇省科技進(jìn)步二等獎(jiǎng)等獎(jiǎng)項(xiàng);現(xiàn)擔(dān)任中國(guó)運(yùn)籌學(xué)會(huì)理事、數(shù)學(xué)規(guī)劃分會(huì)常務(wù)理事,計(jì)算數(shù)學(xué)、Journal of the Operations Research Society of China、Journal of Global Optimization雜志的編委。