全校師生:
我校定于2020年11月15日舉辦研究生靈犀學(xué)術(shù)殿堂——范益政教授報(bào)告會(huì),現(xiàn)將有關(guān)事項(xiàng)通知如下:
1.報(bào)告會(huì)簡(jiǎn)介
報(bào)告人:范益政教授
時(shí)間:2020年11月15日(星期日)9:00
地點(diǎn):騰訊會(huì)議(會(huì)議號(hào):474 582 760)
報(bào)告題目:Minimal non-odd-transversal hypergraphs and minimal non-odd-bipartite hypergraphs
內(nèi)容簡(jiǎn)介:Among all uniform hypergraphs with even uniformity, the odd-transversal or odd-bipartite hypergraphs are more close to bipartite simple graphs than bipartite hypergraphs from the viewpoint of both structure and spectrum. A hypergraph is called minimal non-odd-transversal if it is not odd-transversal but deleting any edge results in an odd-transversal hypergraph. In this paper we give an equivalent characterization of the minimal non-odd-transversal hypergraphs by means of the degrees and the rank of its incidence matrix over $\mathbb{Z}_2$. If a minimal non-odd-transversal hypergraph is uniform, then it has even uniformity, and hence is minimal non-odd-bipartite. We characterize $2$-regular uniform minimal non-odd-bipartite hypergraphs, and give some examples of $d$-regular uniform hypergraphs which are minimal non-odd-bipartite. Finally we give upper bounds for the least H-eigenvalue of the adjacency tensor of minimal non-odd-bipartite hypergraphs.
2.歡迎各學(xué)院師生前來(lái)聽(tīng)報(bào)告。報(bào)告會(huì)期間請(qǐng)關(guān)閉手機(jī)或?qū)⑹謾C(jī)調(diào)至靜音模式。
黨委學(xué)生工作部
數(shù)學(xué)與統(tǒng)計(jì)學(xué)院
2020年11月9日
報(bào)告人簡(jiǎn)介
范益政,安徽大學(xué)數(shù)學(xué)科學(xué)學(xué)院院長(zhǎng)、教授、博士生導(dǎo)師,教育部新世紀(jì)優(yōu)秀人才,安徽省學(xué)術(shù)和技術(shù)帶頭人,中國(guó)數(shù)學(xué)會(huì)理事,安徽省數(shù)學(xué)會(huì)常務(wù)理事。主要研究方向:代數(shù)組合與譜圖理論,主持多項(xiàng)國(guó)家自然科學(xué)基金項(xiàng)目,在Trans. AMS, J. Algebraic Combin., J. Combin. Theory A, European J. Combin., SIAM J Matrix Anal Appl.等期刊發(fā)表論文100余篇。