鈣鈦礦太陽(yáng)能電池(PSCs)以其優(yōu)異的光電轉(zhuǎn)換效率和簡(jiǎn)單的制備工藝受到世界各國(guó)的廣泛關(guān)注。經(jīng)過(guò)近幾年的快速發(fā)展,PSCs的光電轉(zhuǎn)換效率(PCE)已提高到26.1%。然而,空氣環(huán)境中制備的多晶鈣鈦礦薄膜易吸收水分,導(dǎo)致鈣鈦礦結(jié)晶不可控,使鈣鈦礦薄膜存在大量的深淺能級(jí)缺陷。這些深淺能級(jí)缺陷在載流子遷移過(guò)程中捕獲電子/空穴,觸發(fā)非輻射復(fù)合損失,導(dǎo)致開(kāi)路電壓損失并阻礙PSCs效率和穩(wěn)定性的提升。
多功能添加劑工程被證明是鈍化深淺能級(jí)缺陷,調(diào)節(jié)鈣鈦礦的結(jié)晶和獲得高質(zhì)量鈣鈦礦薄膜的一種有效的策略。為此,多種添加劑,如路易斯酸/堿和有機(jī)鹽等被用于鈍化缺陷和提高鈣鈦礦薄膜的結(jié)晶度。研究表明具有疏水基團(tuán)的多功能聚合物分子可鈍化鈣鈦礦的缺陷并調(diào)控其結(jié)晶進(jìn)程。然而,有機(jī)聚合物的導(dǎo)電性較差,阻礙了電荷的提取和傳輸。因此,開(kāi)發(fā)多功能的疏水有機(jī)小分子添加劑,同時(shí)鈍化深淺缺陷并調(diào)節(jié)鈣鈦礦在潮濕空氣中的結(jié)晶是提高PSCs效率和穩(wěn)定性的關(guān)鍵。

基于此,西北工業(yè)大學(xué)蘇海軍教授團(tuán)隊(duì)近日在能源材料領(lǐng)域國(guó)際頂級(jí)期刊Nano Energy上發(fā)表了題為“Deep and Shallow Level Defect Passivation via Fluoromethyl Phosphonate for High Performance Air-Processed Perovskite Solar Cells”的研究論文,Nano Energy, 2023, 118(Part B): 108990。
該文章將具有三絡(luò)合位點(diǎn)的二氟甲基膦酸二乙酯(2F-PAE)引入鈣鈦礦薄膜,鈍化未配位的Pb2+/Pb團(tuán)簇,提高鈣鈦礦薄膜的空位形成能。結(jié)果表明2F-PAE中的P=O/C-O基團(tuán)提供三個(gè)絡(luò)合位點(diǎn)與未配位的Pb2+/Pb團(tuán)簇緊密結(jié)合,鈍化深能級(jí)缺陷并延緩鈣鈦礦結(jié)晶,增加鈣鈦礦的晶粒尺寸。2F-PAE中的-CF2基團(tuán)與FA+通過(guò)氫鍵結(jié)合,鈍化淺能級(jí)缺陷。在P=O、C-O和-CF2的協(xié)同鈍化下,Pb、I和FA空位的形成能提高了2倍以上。2F-PAE鈍化的PSCs的開(kāi)路電壓提高到1.188 V,PCE從20.54%提高到23.69%。基于2F-PAE鈍化的PSCs表現(xiàn)出優(yōu)異的濕度和熱穩(wěn)定性,在連續(xù)照明1500 h后保持82%的初始效率,而控制PSCs僅保持44%的初始效率。該策略為選擇多功能分子提高PSCs的性能提供了重要的視角。
要點(diǎn)一:2F-PAE鈍化的鈣鈦礦薄膜TEM圖及第一性原理計(jì)算
基于2F-PAE的P=O和C-O基團(tuán)與未配位的Pb2+的配位理論,采用第一性原理計(jì)算證明2F-PAE通過(guò)P=O和C-O基團(tuán)與鈣鈦礦的Pb2+結(jié)合,鈍化鈣鈦礦的深能級(jí)缺陷。在P=O、C-O和-CF2基團(tuán)的協(xié)同鈍化下,Pb、I和FA空位形成能增加2倍以上,說(shuō)明2F-PAE可有效鈍化鈣鈦礦薄膜的深淺能級(jí)缺陷。

Fig. 1.(a) Molecular configurations of2F-PAE, ESP of 2F-PAE. (b) A schematic illustration of defect passivation and the interaction 2F-PAE and perovskite. (c) HR-TEM images of the perovskite grains wrapped by amorphous material (2F-PAE). (d) FFT images of the area within boxes region. (e) FFT analysis of the corresponding lattice fringe. (f) ToF-SIMS depth analysis of 2F-PAE passivated perovskite films deposited on FTO/SnO2substrate and corresponding spatial distribution of P+and Pb+ions. (g) Theoretical models of chelation interactions between perovskites and 2F-PAE units. (h-i) Schematic illustration of the interaction between perovskite and 2F-PAE for eliminating VPb, VIand VFA, defect formation energy of surface VPb, VIand VFAwith and without 2F-PAE treatment.
要點(diǎn)二:2F-PAE與鈣鈦礦絡(luò)合的機(jī)制分析
研究了2F-PAE對(duì)PbI2溶液和成分組成,以及對(duì)鈣鈦礦薄膜化學(xué)態(tài)的影響。2F-PAE引入后PbI2溶液紫外吸收峰發(fā)生偏移,F(xiàn)TIR分析證實(shí)PbI2中2F-PAE的存在,XPS分析證實(shí)2F-PAE與鈣鈦礦薄膜的Pb2+和FA+配位,從而改變了鈣鈦礦薄膜的化學(xué)態(tài)。

Fig. 2.(a) UV-vis absorption spectra of PbI2and PbI2with2F-PAE solution. (b) FTIR spectra of PbI2and 2F-PAE with PbI2. XPS spectra of (c) Pb 4f, (d) O 1s, (e) N 1s and (f) F1s for the perovskite films without and with 2F-PAE.
要點(diǎn)三:2F-PAE對(duì)鈣鈦礦薄膜形貌和結(jié)晶速率的影響
2F-PAE與鈣鈦礦的絡(luò)合增加了鈣鈦礦薄膜的晶粒尺寸,改善了鈣鈦礦薄膜的形貌。原位紫外吸收分析證實(shí)了2F-PAE與鈣鈦礦的絡(luò)合可以延緩鈣鈦礦結(jié)晶的速率,使鈣鈦礦晶粒尺寸增加。AFM分析表明2F-PAE的鈍化降低了鈣鈦礦薄膜的粗糙度。

Fig. 3.Morphology analysis of perovskite film. Characteristics of the control and 2F-PAE-incorporated perovskite films (1.0%). (a-b) Scanning electron microscope (SEM) images. (c) The grain size statistical distribution of the SEM. (d-e) AFM images. (f) The height curves vary with distance are recorded from the red solid line of the corresponding AFM image. The in situ absorption spectra during spinning processes for the (g) control and (h) 2F-PAE-incorporated films. (i) UV-Vis absorbance at 600 nm of control and 2F-PAE-incorporated perovskite films as a function of spinning time.
要點(diǎn)四:2F-PAE對(duì)載流子傳輸動(dòng)力學(xué)的影響
研究了2F-PAE對(duì)鈣鈦礦薄膜載流子傳輸動(dòng)力學(xué)的影響。PL、TRPL結(jié)果表明2F-PAE的鈍化抑制了載流子非輻射復(fù)合的損失。SCLC分析證實(shí)2F-PAE的鈍化降低了器件的缺陷態(tài)密度。2F-PAE鈍化的鈣鈦礦薄膜能級(jí)與空穴傳輸層更匹配,有利于電荷的提取和傳輸。

Fig. 4.(a) PL spectra and (b) TRPL decay curves of perovskite films with and without 2F-PAE. (c) Dark current-voltage curves of electron-only devices. (d) UPS spectra of perovskite films without and with 2F-PAE. (e) Energy level diagram of the perovskite films without and with 2F-PAE. (f)VOCversus light intensity. (g) DarkJ-Vcurves. (h) Nyquist plots of the devices without and with2F-PAE. (i) Mott-Schottky plots of the devices without and with 2F-PAE.
要點(diǎn)五:2F-PAE對(duì)鈣鈦礦光伏器件的影響
2F-PAE的鈍化提高了鈣鈦礦器件的光電轉(zhuǎn)換效率,遲滯效應(yīng)明顯減少,基于2F-PAE鈍化的鈣鈦礦器件的穩(wěn)態(tài)效率和電流密度明顯增強(qiáng)。通過(guò)統(tǒng)計(jì)空氣環(huán)境中制備的鈣鈦礦器件發(fā)現(xiàn),本工作制備的鈣鈦礦器件效率是目前空氣環(huán)境中獲得的最優(yōu)效率之一。

Fig. 5.(a) Schematic diagram of planar PSCs. (b) optimalJ-Vcurves of control device and 2F-PAE modified PSCs with different concentrations.J-Vcurves of the best-performing for (c) control and (d) 2F-PAE-modified PSCs. (e) Steady current-density and output PCE at the maximum power point (MPP). (f) EQE spectra and the corresponding integratedJsc of PSCs without and with 2F-PAE. (g)J-Vcurves of the best-performing 2F-PAE-modified PSCs of 1 cm2area. (h) Histograms of PCE distribution among 20 devices. (i) Comparison of the PCE of our work with reported PSCs fabricated in air.
要點(diǎn)六:2F-PAE對(duì)PSCs濕度、熱和光照穩(wěn)定性的影響
2F-PAE的鈍化提高了鈣鈦礦器件的濕度、熱和光照穩(wěn)定性。由于2F-PAE含有的-CF2基團(tuán)也增加了鈣鈦礦薄膜的疏水性,從而提高了鈣鈦礦器件對(duì)水分的阻擋能力,提高了器件的濕度穩(wěn)定性。2F-PAE與鈣鈦礦晶粒的交聯(lián)穩(wěn)定了鈣鈦礦的結(jié)構(gòu),其對(duì)鈣鈦礦薄膜深淺能級(jí)缺陷的鈍化提高了薄膜的質(zhì)量,從而增強(qiáng)了鈣鈦礦器件的熱和光照穩(wěn)定性。

Fig. 6.Stability of the PSCs under various conditions. (a) Stability of the unencapsulated PSCs with and without 2F-PAE stored in the dark and an ambient atmosphere (relative humidity 60%, 25-30 °C). (b) Contact angles of water on control and2F-PAE-complexed perovskite film. (c) Stability of the unencapsulated PSCs with and without passivator performed in the dark and continuous heating at 85 °C in the N2-filled glovebox. (d) Light soaking stability test of the encapsulated devices with and without 2F-PAE performed under white LED lamp (100 mW cm-2) in the air.
文章鏈接
Deep and Shallow Level Defect Passivation via Fluoromethyl Phosphonate for High Performance Air-Processed Perovskite Solar Cells,Nano Energy, 2023, 118(Part B): 108990.
https://doi.org/10.1016/j.nanoen.2023.108990
通訊作者簡(jiǎn)介
蘇海軍教授簡(jiǎn)介:西北工業(yè)大學(xué)材料學(xué)院教授、博士生導(dǎo)師。國(guó)家級(jí)人才,中國(guó)有色金屬創(chuàng)新?tīng)?zhēng)先計(jì)劃獲得者。入選國(guó)家首批“香江學(xué)者”計(jì)劃、陜西省“青年科技新星”、陜西省冶金青年科技標(biāo)兵、陜西省金屬學(xué)會(huì)優(yōu)秀科技工作者,以及陜西高校青年創(chuàng)新團(tuán)隊(duì)學(xué)術(shù)帶頭人和陜西重點(diǎn)科技創(chuàng)新團(tuán)隊(duì)帶頭人。長(zhǎng)期從事先進(jìn)定向凝固技術(shù)與理論及新材料研究,涉及高溫合金、超高溫復(fù)合陶瓷、半導(dǎo)體復(fù)合材料、有機(jī)薄膜太陽(yáng)能電池、生物醫(yī)用陶瓷材料,以及定向凝固和激光增材制造技術(shù)與理論等。主持包括國(guó)家自然基金重點(diǎn)、優(yōu)青等7項(xiàng)國(guó)家基金在內(nèi)的30余項(xiàng)國(guó)家及省部級(jí)重要科研項(xiàng)目,在Nano Energy,Advanced Functional Materials,Nano Letters,Composites part B: engineering,Additive manufacturing等眾多知名期刊發(fā)表SCI論文160余篇。擔(dān)任中國(guó)有色金屬學(xué)會(huì)青年工作委員會(huì)副主任委員、中國(guó)機(jī)械工程學(xué)會(huì)材料分會(huì)委員會(huì)委員、陜西省金屬學(xué)會(huì)副理事長(zhǎng)、陜西省有色金屬學(xué)會(huì)副理事長(zhǎng),以及陜西省納米科技學(xué)會(huì)常務(wù)理事。獲授權(quán)中國(guó)發(fā)明專(zhuān)利50項(xiàng)以及2項(xiàng)美國(guó)發(fā)明專(zhuān)利。參編專(zhuān)著3部。獲陜西高??茖W(xué)技術(shù)研究?jī)?yōu)秀成果特等獎(jiǎng)、陜西省科學(xué)技術(shù)一等獎(jiǎng)、陜西省冶金科學(xué)技術(shù)一等獎(jiǎng)、全國(guó)有色金屬優(yōu)秀青年科技獎(jiǎng)和陜西青年科技獎(jiǎng)各1項(xiàng)。
郭敏副教授教授簡(jiǎn)介:西北工業(yè)大學(xué)副教授、博士生導(dǎo)師。主要從事高溫合金先進(jìn)凝固技術(shù)及先進(jìn)能源材料器件相關(guān)研究工作。主持國(guó)家自然科學(xué)基金面上、兩機(jī)專(zhuān)項(xiàng)子課題等國(guó)家及省部級(jí)科研項(xiàng)目7項(xiàng),參與國(guó)家自然科學(xué)基金重點(diǎn)、國(guó)家重點(diǎn)研發(fā)計(jì)劃等項(xiàng)目10余項(xiàng)。發(fā)表SCI論文40余篇,授權(quán)發(fā)明專(zhuān)利19項(xiàng)。獲陜西省科學(xué)技術(shù)發(fā)明一等獎(jiǎng)、陜西高等學(xué)??茖W(xué)技術(shù)研究?jī)?yōu)秀成果獎(jiǎng)特等獎(jiǎng),陜西省冶金科學(xué)技術(shù)一等獎(jiǎng)、陜西省線(xiàn)上線(xiàn)下混合式一流課程各1項(xiàng)。擔(dān)任《中國(guó)有色金屬學(xué)報(bào)》中英文版青年編委。
第一作者簡(jiǎn)介
劉聰聰:西北工業(yè)大學(xué)材料加工工程專(zhuān)業(yè)博士研究生。